
Series analysis of tricritical behaviour: mean-field model and partial differential approximants

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1979

(http://iopscience.iop.org/0305-4470/30/6/022)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1979–1989. Printed in the UK PII: S0305-4470(97)76427-8

Series analysis of tricritical behaviour: mean-field model
and partial differential approximants

Zaher Salman and Joan Adler
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

Received 12 July 1996

Abstract. A partial differential approximant (PDA) analysis of series for the tricritical point
of the mean-field model of Glasser, Privman, and Schulman has been developed. All features
of the tricritical point are exactly reproduced by an overwhelming majority of the trial PDAs in
contrast to the mixed success of the slicewise Padé approximant method. The effect of noise on
the approximant convergence is also studied.

1. Introduction

We report here on a substantial advance in the development of algorithms for the numerical
investigation of tricritical behaviour in a two-variable phase diagram. Such a method of
analysing series for models with a tricritical point has been an elusive aim for many years in
the context of both magnetism and polymer studies. A full review of the physical systems
exhibiting tricriticality and previous calculations in both a series and a simulation context
has recently been given by Adler and Privman [1]. These authors derived a test series based
on a mean-field model with a tricritical behaviour which is well understood and has most of
the features of ‘real’ tricritical points of two-dimensional (2D) and three-dimensional (3D)
systems. We will summarize the features of the model in section 2.

The only reliable method for studying tricritical points from series expansions that has
been applied to date is matching high and low temperature series, when available [2].
Some early studies [3] also used a standard ‘slicewise’ Padé method. In [1] this method
was applied to the ‘test’ series of the mean-field model. While those features of the Padé
approximant approach which can be regarded as signatures of a tricritical point in the
phase diagram, and which were noted in early studies of tricriticality [3], were identified,
it was concluded, that this most straightforward Padé method is not suitable as an accurate
and systematic analysis technique. In the present paper we describe our development of a
systematic method, based on elaborations of the two-variable partial differential approximant
(PDA) techniques used successfully for bicritical points [4]. The analytic solution with
PDAs is given in section 3 and the numerical solution is given in section 4. Section 5 is
devoted to concluding remarks.

2. The mean-field model

The models of Glasseret al [5], avoid some pathologies common to other infinite-range
models. They have a ‘soft’ temperature (T ) dependence which is an artefact of the infinite-
range model, and there are some other artificial features nearT = 0, but the series is well
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defined and can be derived in closed form to any fixed order given sufficiently powerful
computational facilities.

The model has interacting scalar spins,σi , with energy

E = − J

2N

( N∑
i=1

σi

)2

(2.1)

whereN is the number of spins, andJ > 0.
The Gaussian-integral method [5] was used to show that in the limitN → ∞ the

dimensionless free energy,f , can be obtained as

f = min
x

[
kT x2

2J
−Q(x)

]
(2.2)

where

Q(x) = ln
∫

exσ dµ(σ). (2.3)

The spins are weighed with measure dµ(σ) in the partition function from whence the free
energy is obtained, and the variablex [5] is equal toy(2J/kT N)1/2, wherey is the variable
introduced in the Gaussian integral. If the minimum in (2.2) is at somex = xm, then one
can further show that the magnetization,m, is

m =
(

dQ

dx

)
x=xm
= kT xm

J
(2.4)

where the last equality follows from the fact that the global minimum is obtained at one (or
more) roots of

dQ

dx
= kT x

J
. (2.5)

Thus, we note thatm = kT xm/J , i.e. m ∝ T for low temperatures. This is one of those
artificial infinite-range model features. It is convenient to work withxm directly rather
than withm, as the order-parameter-like quantity for series analysis. Of course, the actual
critical–tricritical first-order behaviour is atT > 0 so the difference only affects the form
of analytic corrections to scaling.

In order to have a solvable model with tricritical behaviour,Q(x) was taken as an even,
six-degree polynomial inx, the actual serieswas conveniently generated [1] for

xm
√

3=
√√

(U − 1)2− 3(T − 1)+ U − 1 (2.6)

whereU is a dimensionless coupling constant just asT is a dimensionless temperature in
this model. UsingMathematica, the order 50 double series inT andU for this order-
parameter quantity was derived in [1]. It is expressed as the first 2601 coefficientscij , for
i, j = 0, . . . ,50, in

√
3xm =

50∑
i=0

50∑
j=0

cijT
iUj . (2.7)

An analysis of the exact solution [1] showed thatUc = Tc = 1, and that near the tricritical
point, one can write the low-T -side scaling form in terms of the scaling variables

t = T − 1< 0 and u = U − 1 (2.8)
√

3xm ' (u)1/2Z−
(−t
u2

)
(2.9)
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where the scaling form (2.9) applies fort, u→ 0 and the scaling function is

Z−(ζ ) =
√

1+
√

1+ 3ζ . (2.10)

3. An analytic solution by PDA

The PDA method was developed by Fisher and co-workers [6–8] for two-variable series
analysis and extrapolation. It allows us to estimate the critical parameters for functions with
the following asymptotic form

f (t, u) ≈ |u|−γ Z
( −t
|u|φ

)
+ B (3.1)

near the critical region, which is satisfied at both bicritical points [6, 7], and tricritical points
[9]. For bicritical points, analyses were made by Fisher [6, 10] for the Ising–Heisenberg
XY model, and for the 2D Ising model by Styer [8]. The numerical analysis of the
Ising–HeisenbergXY model [6, 10] yielded good results for the bicritical point, the critical
exponents, and the scaling slopes. For the 2D Ising model, we have an analytic solution for
the magnetization [8], and PDAs have an exact solution in this case; the numerical results
were very accurate in this case and these will be given in [11]. Just as for the simpler
single-variable Pad́e approximants, our aim is to calculate approximants tof (t, u) and then
obtain estimates of the critical parameters from these approximants.

From a comparison between equations (3.1) and (2.9) we can see that for the model
defined above that we will study, we expect to obtain the resultsγ = −0.5 andφ = 2. The
tricritical point in this model [1] is atU = T = 1. The generating equation of the PDA [6]
is

VJ (T ,U)+ PL(T ,U)F (T ,U) = QM(T ,U)
∂F (T ,U)

∂U
+ RN(T ,U)∂F (T ,U)

∂T
(3.2)

whereF(T ,U) is the solution of the generating equation,VJ (T ,U), PL(T ,U),QM(T ,U),

and RN(T ,U) are polynomials in the two variablesU and T . These have non-zero
coefficients on the setsJ,L,M, andN , respectively, of coefficient values. (It is more
usual to useUJ , rather thanVJ but sinceU was used as a variable for our model, we use
V for the polynomial.) There is another set,K, which is called the matching set which
determines the matching coefficients off andF , i.e. if the series expansion of the solution
F(T ,U) = ∑∞i,j=0 cijT

iUj and that off (T ,U) = ∑∞i,j=0 fijT
iUj , thencij = fij for all

(i, j) ∈ K. In our case

f (T ,U) = xm
√

3=
√√

(U − 1)2− 3(T − 1)+ U − 1 (3.3)

and we have found that the generating equation (3.2) has an exact analytic solution for
f (T ,U) in equation (3.3). This is the PDA that will be referred to hereafter as the minimal
approximant:

V (T ,U) = 0

P(T ,U) = 1

Q(T,U) = 4(T − 1)

R(T ,U) = 2(U − 1).

(3.4)

Applying PDAs to a two-variable series of a function with the scaling form (3.1), one
finds the multi-critical point(Tc, Uc) (tricritical in our case) to be approximated as the
common zero(T0, U0) of QM(T ,U) andRN(T ,U). Solving the generating equation (3.2)
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near the multi-critical point for the scaling form (3.1) one can see [6] that the critical
parameters of (3.1) satisfy the relations:

γ = − P0

R2− e2Q2
φ = Q1− R1/e1

R2− e2Q2
B = −V0

P0
(3.5)

where

P0 = P(T0, U0) V0 = V (T0, U0)

Q1 = ∂Q(T0, U0)

∂T
Q2 = ∂Q(T0, U0)

∂U

R1 = ∂R(T0, U0)

∂T
R2 = ∂R(T0, U0)

∂U

(3.6)

and the scaling slopese1, e2 which can be defined from

t = (T − T0)− (U − U0)

e1

u = (U − U0)− e2(T − T0)

(3.7)

are the solutions of

Q2e
2+ (Q1− R2)e − R1 = 0. (3.8)

For our model, a comparison of equation (2.8) with equation (3.7) shows that the two
roots of equation (3.8) should bee1 = −∞ and e2 = 0. Using the exact solution (3.4) to
substitute the numerical values of (3.6) into (3.5), and substituting the solution of (3.8) into
(3.7) one can easily see that for the case we are dealing with indeed we obtain the exact
results

T0 = 1 U0 = 1

γ = −0.5 φ = 2

e1 = −∞ e2 = 0.

(3.9)

These are in agreement with the parameters of the full solution as given above.

4. Numerical analysis

In order to explain our analysis and to provide an exposition of the PDA method we now
commence a careful description of the implementation of the PDA solutions. We will
discuss both exact sets which include the minimal exact solution of the previous section
and solve the generating equation and other approximate sets which also include the minimal
exact solution. We begin by describing one set in detail and then repeat the procedure for
the other sets without giving all the details. The first non-minimal exact set to be used
in solving the PDAs is given in table 1. This set has been selected to be fairly small for
ease of explanation but not so small that characteristic features are lost. The table uses
the graphical notation developed by Fisher [6] and used by Styer in his published program
[7]. In this graphical notation one gives each two-variable polynomial

∑n
i=0

∑m
j=0 aijT

iUj

a (n × m) matrix of X’s and blanks, an X in the(i, j)th element means thataij can take
values other than 0, while a blank in the(i, j)th element meansaij = 0. This graphical
notation aids us to visualize the shape of the polynomials in the two-variable space.
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Table 1. The setsJ,L,M, andN , corresponding to the approximant of equation (4.1).

The setJ of coefficients ofV The setL of coefficients ofP

XX
X
X

The setM of coefficients ofQ The setN of coefficients ofR

XXX XX
XX XX
XX X

X

Table 2. The setsK used with the first approximant, all with|K| = 16.

#1 #2 #3 #4 #5

XXXXX XXXXX XXXX XXXXX XXXX
XXXX XXXXX XXXX XXXXX XXXX
XXX XXX XXXX XXXX XXXX
XX X XX XXXX XX XX
X X XX

#6 #7 #8 #9 #10

XXX XXXXX XXXXXX XXXXXX XXXXXX
XXX XXX XXX XXXX XX
XXX XXX XX XX XX
XXX XXX XX X XX
XX X X X XX
XX X X X X

X X X X

The polynomials themselves (which solve the generating equation in our case) are:

V (T ,U) = 0

P(T ,U) = p[(U − 1)2− 3(T − 1)]

Q(T,U) = 4p(T − 1)[(U − 1)2− 3(T − 1)]

R(T ,U) = 2p(U − 1)[(U − 1)2− 3(T − 1)]

(4.1)

wherep is a constant parameter.
As we can see directly from (4.1)V is zero so all rows and columns have blanks in the

J set. The expansion of (4.1) is

PL(T ,U) = p00+ p10T + p01U + p02U
2

QM(T ,U) = q00+ q10T + q20T
2+ q01U + q11T U + q02U

2+ q12T U
2

RN(T ,U) = r00+ r10T + r01U + r11T U + r02U
2+ r03U

3

(4.2)

wherepij , qij , and rij are such that in table 1i denotes columns andj denotes rows. In
the present modelp00 = 4p; p10 = −3p; p01 = −2p; p02 = p etc it is because of
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Table 3. The other approximant setsJ , L, M, N , andK.

# J L M N K # J L M N K

1 XX X XXX XX XXXXX 2 X XX XXX XXX XXXXXX
X X XX X XXXX XX XXX XX XXXXXX

X X X XXX X XX X XXXX
X XX X X XXX

X X

3 XXX XX XXX XX XXXXX 4 XXXX XXX XX XXXXXX
XX XX XX XX XXXXX X XXX XX XXXXX
X XX X X XXXXX X XX XXXX

XXXXX X XX
XX X

5 X XXX XXX XXXXX 6 XXXX XXX XXXX XXXX XXXXXXXX
X XXX XX XXXXX XXX XX XXX XXX XXXXXXX
X XXX X XXXX XX X XX XX XXXXXX

X XX X X X XXXXX
XX XXXX

XXX
XX

7 XX XX XXX XX XXXXX 8 XXX XXX XX XXXXXX
X XX XX XXX XXX XXX XX XXXXX

X XXX XXX XXX XX XXXX
X XXX XX XXXX

X XXX
XX
X

9 XXX XXXX XXX XXXXXXX 10 XXXX XX XXX XXXXXX
XXX XXXX XXX XXXXX X XX XX XXXX
X XX XX XXXX X XX XX XXX

X XXX X XXX
XXX XX
XX X
X

the exact solution that we are able to specify the coefficients. When no exact solution is
avaliable a polynomial of the same shape would still be indicated by two X’s in the first
row corresponding to the non-zero constant term,p00, andT coefficientp10, and those in
the first column of the second and third rows, correspond to the coefficientsp01 andp02

for U andU2, correspondingly. Similarly for the coefficients ofQ andR; we can see that
the three X’s in the first row of the setM correspond to the constant,T andT 2 terms. For
this first non-minimal set we checked that it is an analytic solution and that it gives results
identical to the minimal exact approximant.

For the numerical analysis we used 15–35 terms of the series, making analyses with
many different generalizations of the minimal approximant. Finally, we added ‘noise’ to
mimic series with numerical uncertainties. To solve the generating equation numerically
we used a Fortran program, based on Styer’s PDA subroutine library [7]. We tested our
version of the program by repeating the bicritical analysis of [6, 8, 10], and wish to note
that this validation was complicated by problems with the published tables of the bicritical
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Figure 1. The value ofTc approximated as a function of noise for the first approximants.

Figure 2. The value ofUc approximated as a function of noise for the first approximants.

series of [12]. Details of this will be given in [11]. Part of our validation was based on
material from Styer [8]. We have developed a graphical interface for our version of the
PDA routine and would be happy to provide this on request.

Once validation was complete, we first used our program to approximatef (T ,U)

with the approximant of table 1 and different matching setsK of |K| = 16 (see table 2)
coefficients from the series (2.7) (to answer the requirement for unconstrained approximants
|K| = |J | + |L| + |M| + |N | − 1) with the normalization conditionp00 = 1, and then
with non-minimal sets (also unconstrained approximants). For example set #1 (from
table 2) corresponds to matching the coefficientscij (with i = 0, 1, 2, 3, 4 j = 0,
i = 0, 1, 2, 3 j = 1, i = 0, 1, 2 j = 2, i = 0, 1, 3 j = 3 and i = 0, j = 4) of
F(T ,U) with the corresponding coefficients off (t, u). All the approximants from tables 1
and 2 gave the exact result ofT0 = U0 = 1, γ = −0.5, φ = 2, e1 = −∞, ande2 = 0.
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Figure 3. The value ofγ approximated as a function of noise for the first approximants.

Figure 4. The value ofφ approximated as a function of noise for the first approximants.

As well as the above described case we solved the generating equation for a second set
of other non-minimal approximants (table 3). Similarly to the case of the first approximants
all other approximants gave correct results, but one approximant (#1 from table 3) gave the
following results: T0 = 1.0216,U0 = 1.168, γ = φ = 0, ande1 = e2 = 0, for which we
have no explanation.

To examine the stability of the approximants and to mimic series that are not expansions
of exact solutions better we inserted increasing amounts of noise into the series. The noise
was introduced by randomly changing the coefficients of the series in the following way:
cij = cij + N × R; whereN is the noise amplitude taking the values 0.0001, 0.000 01,
0.000 001, 0.000 0001, and 0.000 000 01, whileR is a random number in the interval [−1, 1].

For the first approximants one can see in figures 1 and 2 that as the noise in the
coefficients is reduced, the value of the approximatedTc andUc converges to 1 as expected,
except for approximant #2 which approaches toT0 = 0.9993 andU0 = 0.906.
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Figure 5. The value ofTc approximated as a function of noise for the second approximants.

Figure 6. The value ofUc approximated as a function of noise for the second approximants.

Similarly in figures 3 and 4 one can see that the values of the exponentsγ and φ
converge to−0.5 and 2 correspondingly; except for approximant #2 which converges to
γ = −0.2875 andφ = −5091. Notice that approximant #2 gives bad results for both the
tricritical point and the critical exponents, though in the case of critical exponents the errors
were considerably larger.

For the second approximants the results were also very encouraging as one can see from
figures 5 and 6, which show the values of the approximatedTc andUc, correspondingly,
as a function of noise. We can see that except for approximant #1, which converges to
T0 = 1.004 andU0 = 1.042, all approximations converge to 1.

Similarly the approximated values of the exponentsγ and φ converge to−0.5 and
2 correspondingly, as can be seen in figures 7 and 8, except for approximant #1, which
converges toγ = −0.4334 andφ = 1.888. Note that approximant #1 does not yield exact
results for either the tricritical point nor the critical exponents, with and without noise. We
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Figure 7. The value ofγ approximated as a function of noise for the second approximants.

Figure 8. The value ofφ approximated as a function of noise for the second approximants.

are not certain what causes this deviation; however, it is very clear that in each sample nine
of the ten give exact results and so the defective one can be discarded. This is a higher
typical success rate than occurs in many Padé-type analyses.

5. Conclusions

We have made an accurate characterization of a tricritical point from a series expansion.
The minimal exact approximant, and 18 of the other 20 approximants converged with many
significant figures to the exact results. The other two had errors mostly of a few percent. The
addition of noise enabled us to explore the nature of the convergence under more realistic
conditions. We found pleasing convergence to the exact results, even for noise levels far
larger than would be found in series calculated with typical precision. We intend to apply
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the method to various other series [2, 3] describing tricritical points in the near future.
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